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Abstract— In this paper, we consider the problem of coordin-
ating a multi-agent team to maintain a connected topology
while equipped with limited field of view sensors. Applying the
potential-based control framework and assuming agent interac-
tion is encoded by a triangular geometry, we derive a distributed
control law based on two non-linear functions, the point-to-
line distance and the multivariate Gaussian, in order to achieve
the topology control objective. Furthermore, we demonstrate a
condition on digraphs for which the proposed control strategy
achieves the system objective. Finally, numerical simulations are
provided to corroborate the theoretical findings.

I. INTRODUCTION

In the last two decades, distributed coordination problems
for multi-agent systems have been widely investigated. While
much attention has been devoted to symmetric coordination
problems [1]–[7], asymmetric (or directed) ones have not been
investigated as deeply. This is mostly due to the fact that in
directed settings most of the properties that hold easily in
the undirected context are difficult to verify and maintain.
Nevertheless, recent works like [8]–[11] have investigated
the directed coordination problem with success. In [8] the
authors derive a class of digraphs for which a team of locally
cooperating agents with linear time-invariant dynamics can dis-
tributively solve optimization problems that generally require
global information in order to be solved. In [9] a consensus
tracking problem with bounded input constraints is addressed
to achieve current-sharing in a parallel charging system with
directed communication. In [10], we derived a distributed
potential-based control framework for topology control in
which the anti-gradient potential control term assumes the
usual quasi-linear, anti-symmetric form. In this work, we
are interested in relaxing this quasi-linear, anti-symmetric
assumption allowing us to consider nonlinear anti-gradient
control terms capable of representing control schemes for
topology control with triangular fields of view.

One of the directed coordination problems that has received
recent attention [12]–[15] is control with limited fields of
view (FOVs), for example aerial vehicles equipped with
cameras capable of sensing other agents in a visually restricted
area. In [12], a consensus and containment problem for a
network of single-integrator agents with limited angular fields
of view is considered. Under the connectivity assumption
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of the interaction digraph the authors manage to prove the
convergence of the proposed control strategy considering first
semi-circular FOVs and then heterogeneous angular FOVs.
The authors in [13] consider an extremum-seeking problem
for a mobile robot equipped with limited FOV sensing. A
control scheme is proposed such that the robot orients its FOV
to maximize an objective function subject to nonholonomic
constraints. In this regard, our proposed control framework
will be able to achieve a global objective, such as topology
control, while encoding the best interactions among the agents.
Moreover, in [14] a formation control problem for a team of
agents equipped with limited field of view sensors is addressed.
The authors, after designing a distance estimator scheme,
manage to prove the convergence of the formation control
protocol under the presence of time delays and discontinuous
image issues.

In this paper, we propose a distributed potential-based
coordination framework for agents equipped with limited field
of view sensors. In particular, considering as a case study
triangular fields of view rigidly attached to the agents, we
derive a potential field to control agent motion in order to: i)
keep the neighbors of each agent inside its field of view and
ii) try to obtain the best FOV interactions using a quality map
given by the sensors. Differently from the classical potential-
based control, the proposed potential field does not require the
usual quasi-linear and anti-symmetric assumptions allowing
us to use generic non-linear functions such as the point-to-
line distance and a multivariate Gaussian. Simulation results
involving a team of six agents are then provided to prove the
effectiveness of the proposed control strategy.

II. PRELIMINARIES

A. Agent and Network Modeling

Let us consider a multi-agent system composed of n agents
and assume that each agent i has the a first-order dynamics
ṡi(t) = ui(t) with si(t) = [pi(t)

T , θi(t)]
T ∈ R2 × (−π, π]

the state of the agent i composed of the position
pi(t) = [xi(t), yi(t)]

T ∈ R2 and the orientation θi ∈ (−π, π],
while ui(t) ∈ R3 denotes the control input. Stacking agent
states and inputs yields the overall system

ṡ(t) = u(t) (1)

with s(t) = [s1(t)T , . . . , sn(t)T ]T ∈ R2n × (−π, π]n and
u(t) = [u1(t)T , . . . , un(t)T ]T ∈ R2n×(−π, π]n the stacked
vector of states and control inputs, respectively. In the sequel,
time-dependence will be omitted for the sake of clarity.

Let us assume that each agent i possesses a limited field of
view that is encoded by a triangle geometry Ti rigidly fixed



to the agent. This kind of sensing yields asymmetric agent
interactions that we will describe through a directed graph
G = {V, E} with node set V = {q1, . . . , qn} and edge set
E ⊆ V × V . In particular, we will say that an edge eij ∈ E
connects agent i and agent j if pj ∈ Ti. In addition, when refer-
encing single edges we will use the convention ek meaning that
we are referencing the k-th directed edge out of |E| total edges1.
Moreover, we will denote by N+

i = {j ∈ V : (i, j) ∈ E} the
set of out-neighbors of agent i andN−i = {j ∈ V : (j, i) ∈ E}
the set of in-neighbors. Note that since the graph is directed
(i, j) ∈ E does not imply (j, i) ∈ E .

A useful representation for a directed graph G is the
incidence matrix B(G) ∈ Rn×|E|, that is a matrix with rows
indexed by agents and columns indexed by edges, such that
Bij = 1 if the edge ej leaves vertex vi, −1 if it enters
vertex vi, and 0 otherwise. The outgoing incidence matrix
B+ contains only the outgoing parts of the incidence matrix B,
with incoming parts set to zero. We will also make use of the
directed edge Laplacian LdE ∈ R|E|×|E| given by LdE = BTB+.
For properties of the edge Laplacian see for example [7], [16].
Let us also recall the definition of a positive semi-definite
matrix that is, given a symmetric m×m matrix A it holds that
xTAx ≥ 0 ∀x ∈ Rm in which the strict inequality implies the
positive definiteness of A. This definition can be extended to a
non-symmetric matrix B by considering the positive (semi)-
definiteness of its symmetric part Bs = (B + BT )/2 since
xTBsx ≥ 0 implies xTBx ≥ 0.

III. DIRECTED COORDINATION FRAMEWORK

A. Field of View Modeling

In this section we derive the mathematical modeling of the
agents’ fields of view that we assume here to take on a triangle
geometry. The triangle Ti encoding the sensing of the agent i is
described by three points vki ∈ Ti ⊂ R2 with k ∈ {1, 2, 3} and
by an angle offset ηi with respect to the agent orientation θi.
This modeling allows us to represent drones or ground robots
equipped with limited field of view sensors that are not aligned
with the agent’s body-fixed reference frame. In this work, as
a case study we assume that the triangle Ti is an isosceles
triangle with sides of length li ∈ R+ and angle 2αi ∈ R+.
This leads to the following formal description

v1i = pi

v2i = pi + liR(ηi) t
2
i

v3i = pi + liR(ηi) t
3
i

(2)

where R(ηi) is a rotation matrix with respect to the angle ηi
and tki with k ∈ {2, 3} are translation vectors defined as

t2i =

(
cos (θi − αi)
sin (θi − αi)

)
t3i =

(
cos (θi + αi)

sin (θi + αi)

)
(3)

A graphical representation of the triangular field of view can
be found in Figure 1 in which the following angles have been
used θi = 60◦, ηi = 75◦, and αi = 35◦.

1In order to reference the k-th edge, the edge set E needs to be sorted. A
simple sort can be obtained enumerating the edges (1, j) of the first agent as
e1, e2, . . . , then the edges (2, h) of the second agent and so on.
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Fig. 1. Modeling of the triangular field of view Ti with side li of the agent si
in which the angles θi = 60◦, ηi = 75◦, and αi = 35◦ have been used. In
dashed green lines are reported the distances d1ij , d2ij , and d3ij introduced in
eq. (6).

B. Potential Fields for Topology Maintenance

As a case study let us consider the maintenance of the
interactions (topology) among the agents in the network, i.e.,
we want to preserve the initial graph G. In other words, we want
to derive a distributed potential-based control law such that
each agent i maintains its neighbor j inside the triangle Ti. For
this purpose, we will make use of the perpendicular distance
from a point, the agent j, to a line, the side of the triangle Ti.
Specifically, the distance D from a point P0 = (x0, y0) to
a line P1 P2 that passes through two points P1 = (x1, y1),
P2 = (x2, y2) is defined as:

D(P0, P1 P2) =
(y2 − y1)x0 − (x2 − x1)y0 + x2y1 − y2x1√

(y2 − y1)2 + (x2 − x1)2

(4)
A natural potential field that keeps the agent j inside the field
of view of the agent i is then the following

Φij (si, sj) =
3∑
k=1

(
1

dkij

)2

(5)

where the terms dkij with k ∈ {1, 2, 3} are the distance between
the agent j and the three sides of field of view of the agent i
respectively (Figure 1), that is

d1ij = D
(
sj , v1i , v

2
i

)
d2ij = D

(
sj , v1i , v

3
i

)
d3ij = D

(
sj , v2i , v

3
i

) (6)

We now demonstrate a technical result of the potential
field Φij in (5) that will prove necessary to derive the main
result in Theorem 1.

Lemma 1. The potential field Φij in (5) satisfies the local
potential property∇piΦij = −∇pjΦij .



Proof. In order to prove this lemma we will show how the
gradient of the potential term Φij with respect to the positions
of the agents i and j are equal but with opposite signs.
However, since the derivation is equal for all the terms

(
dkij
)−2

with k ∈ {1, 2, 3}, we will only derive the gradient of the
term

(
d1ij
)−2

since the same reasoning applies to the others.
Denoting the points v1i , v

2
i as v1i = (x1, y1), v2i = (x2, y2),

the square of the distance d1ij can be derived as

(d1ij)
2 =

(
(y2 − y1)xj − (x2 − x1)yj + x2y1 − y2x1

)2
(y2 − y1)2 + (x2 − x1)2

(7)
then, using the definition of v1i and v2i given in (2) we obtain

(d1ij)
2 = l−2i

(
li
(
(xi − xj) sin γ + (yi − yj) cos γ

))2
=

[
(pi − pj)T

(
sin γ

cos γ

)]2 (8)

where γ ∈ R is the angle defined as γ = αi − 2ηi − θi. Now,
computing the gradient with respect to the agent i we obtain

∇pi

(
1

d1ij

)2

= − 2

(
sin γ

cos γ

)[
(pi − pj)T

(
sin γ

cos γ

)]−3
(9)

while with respect to the agent j we get

∇pj

(
1

d1ij

)2

= 2

(
sin γ

cos γ

)[
(pi − pj)T

(
sin γ

cos γ

)]−3
(10)

Then, assuming a similar derivation for the terms d2ij and d3ij
we have that

3∑
k=1

∇pi

(
1

dkij

)2

= −
3∑
k=1

∇pj

(
1

dkij

)2

(11)

which implies that ∇piΦij = −∇pjΦij thus completing the
proof.

Remark 1. It should be noted that the gradient control
term ∇piΦij in eq. (9) can be expressed in a generic form
as

∇piΦij(pi, pj) = f(pi, pj) (12)

in which f ∈ C0 is a continuous function. Furthermore, the
gradient control term (9) is not always differentiable since
the denominator sin(γ)(xi − xj) + cos(γ)(yi − yj) can be
equal to zero in four cases: i) when the distance between the
agent i and j goes to zero, ii) when the agents are aligned
on the x-axis and the angle γ = 0, iii) when the agents are
aligned on the y-axis and the angle γ = π

2 , or iv) when the
angle γ = arctan

(
− yi−yj
xi−xy

)
. However, in this work, the

aforementioned behaviours are not allowed since the potential
field is built in order to keep the neighbor j inside the FOV of
the agent i. Future work will investigate this aspect in order to
remove such limitation for more general topology control.

Until now we have considered the maintenance of the initial
agent interactions, focusing on keeping each neighbor j ∈ N+

i

200
5

0-20
0 -20

20 -40

Fig. 2. Example of the potential field Ψij centered in [0, 0]T with amplitude
A = 5 and variance coefficients a = b = 0.1.

inside the limited field of view of the agent i. We want now to
take a further step by modeling the possibility for each agent i
to control its field of view in order to have its neighbors in
a specific point of the triangle Ti in which the quality of the
interactions is the best. In order to do so, let us assume that
each agent is provided with a quality mapM of its FOV that
gives a quality metric for each interior point and let us also
assume that each agent is capable of differentiating this map2.
This allows us to model the mapM as a potential field that
we can use together with the point-to-line potential discussed
previously.

To this end, let us denote with t?i ∈ R2 the desired position
that the neighbors of the agent i should reach inside the FOV
of the agent i, defined as

t?i = pi + l?i R(ηi)

[
cos θi

sin θi

]
(13)

Now, in order to model the mapM we use a two-dimensional
Gaussian function Ψij(si, sj) with mean equal to t?i = (x0, y0)
and variance σ2

x, σ
2
y , that is

Ψij(si, sj) = A
(
1− e−τ

)
(14)

in which A is the amplitude and τ is defined as

τ =
(xj − x0)2

2σ2
x

+
(yj − y0)2

2σ2
y

= a(xj − x0)2+ b(yj − y0)2

(15)
with a = (2σ2

x)−1, b = (2σ2
y)−1 the sensor related variances

(see Figure 2).
Similar to the FOV maintenance controller, we can move

along the anti-gradient of our potential field Ψij(si, sj) to
orient the FOV of the agents in order to minimize the distance
between the neighbors j ∈ Ni and the desired position t?i . We
now demonstrate again a technical result of the potential field
Ψij in (14) that will prove necessary to derive the main result
in Theorem 1.

Lemma 2. The potential field Ψij in (14) satisfies the local
potential property∇piΨij = −∇pjΨij .

Proof. In order to prove this result, similar to the proof of the
previous lemma, we will show how the gradient of the potential

2This map can be either an intrinsic property of the sensors or extrinsic
influence. Extrinsic influences may occur for example in vision applications
where illumination, occlusion, etc., may induce wide variations in the quality
of vision-based agent interactions.



term Ψij with respect to the positions of the agents i and j are
equal but with opposite signs. Recalling the definition of the
desired position t?i in (13), the potential term Ψij is

Ψij(si, sj) = A
(
1− e−τ

)
(16)

where τ defined in (15) can be expressed as

τ = a
(
l?i cos γ + xi − xj

)2
+ b
(
l?i sin γ + yi − yj

)2
(17)

in which γ ∈ R is the angle equal to γ = θi + 2ηi. Now,
computing the gradient with respect to the agent i we get the
following

∇piΨij = 2A

(
a e−τ (xi − xj + l?i cos γ)

b e−τ (yi − yj + l?i sin γ)

)
(18)

while the gradient with respect to pj is

∇pjΨij = −2A

(
a e−τ (xi − xj + l?i cos γ)

b e−τ (yi − yj + l?i sin γ)

)
(19)

which shows clearly that∇piΨij = −∇pjΨij thus completing
the proof.

Remark 2. Similar to the term∇piΦij in eq. (12), the gradient
control term∇piΨij in (18) can be expressed in a generic form
as

∇piΨij(pi, pj) = g(pi, pj) (20)

in which g ∈ C0 is a continuous function.

We are now ready to introduce the control law that each
agent i needs to run in order to keep its neighbors in the limited
sensing zone Ti near the desired point t?i as the following

ṗi = −
∑
j∈N+

i

∇pi
(

Φij(si, sj) + Ψij(si, sj)
)

(21a)

θ̇i = −
∑
j∈N+

i

∇θi
(

Φij(si, sj) + Ψij(si, sj)
)

(21b)

where Φij(si, sj) and Ψij(si, sj) are the potential fields
introduced above in (5) and (14). Note that, as it will be
shown later, the potential fields Φij ,Ψij do not depend on
the orientation θj of the neighbors j ∈ N+

i but only on their
position pj . Finally, stacking the position and the orientation of
the agent i we obtain the following form for the control input
ui:

ṡi = −
∑
j∈N+

i

∇si
(

Φij(si, sj) + Ψij(si, sj)
)

︸ ︷︷ ︸
ui

(22)

C. Theoretical Analysis

In this section we provide the main result of our work,
that is the stability analysis of the proposed topology control
framework. To this end let us introduce the matrix L defined as

L =

[(
BTB+

)
⊗ I2 O2|E|×|E|

O|E|×2|E|
(
BT+B+

)] (23)

where B is the incidence matrix of the graph G, B+ is the
outgoing portion of B, I2 is the 2×2 identity matrix and Or×r

is a r × r zeros matrix. We are now ready to state our main
result.

Theorem 1. Consider the multi-agent system (1) running
control laws (22). Then, if the matrix L defined as (23) is
positive semi-definite, the system is stable in the sense that if
the energy V (s(t)) is finite at time t = t0 then it remains finite
for all t > t0.

Proof. In order to study the stability of our proposed control
framework, let us introduce the following Lyapunov function
for directed graphs V : R2n × (−π, π]n → R+ defined as

V (s(t)) =

n∑
i=1

∑
j∈N+

i

(
Φij (si, sj) + Ψij (si, sj)

)
︸ ︷︷ ︸

Vij(si,sj)

(24)

with time derivative V̇ (s) = (∇sV )
T
ṡ. Now, by following a

similar reasoning as in [10] we want to derive an edge-based
form of∇sV and ṡ that will reveal the topology of the graph.
First, let us consider the general form for the gradient of the
Lyapunov function ∇sV , that is

∇sV =

n∑
i=1

∑
j∈N+

i

[
0, . . . ,∇siV Tij , 0, . . . , 0,∇sjV Tij , . . . , 0

]T
=
[ ∑
j∈N+

1

∇s1V T1j +
∑
j∈N−1

∇s1V Tj1 , . . . ,

+
∑
j∈N+

n

∇snV Tnj +
∑
j∈N−n

∇snV Tjn
]T
(25)

Let us now analyze the gradient contributions related to the
agent h, that is

∇shV =
∑
j∈N+

h

∇shVhj +
∑
j∈N−h

∇shVjh

=
∑
j∈N+

h

∇xh
Vhj

∇yhVhj
∇θhVhj

+
∑
j∈N−h

∇xh
Vjh

∇yhVjh
∇θhVjh



=



∑
j∈N+

h

∇xh
(Φhj + Ψhj)∑

j∈N+
h

∇yh(Φhj + Ψhj)∑
j∈N+

h

∇θh(Φhj + Ψhj)

−

∑

j∈N−h

∇xj
(Φjh + Ψjh)∑

j∈N−h

∇yj (Φjh + Ψjh)

0


(26)

where we have exploited the local properties proven
in Lemma 1 and Lemma 2 and the fact that∑
j∈N−h

∇θh(Φjh + Ψjh) is equal to zero since the
orientation θh of the agent h is not involved in the potential
terms Φjh and Ψjh.

Since the contributions in eqs. (25) and (26) are related to the
edge endpoints we can restate ∇sV using the stacked vector
of potential field gradients ξ ∈ R3|E| =

[
ξTxy, ξ

T
θ

]T
where



ξxy ∈ R2|E| and ξθ ∈ R|E| are defined as

ξxy =
[
∇xe1(1)

V Te1 ,∇ye1(1)
V Te1 , . . . ,∇xe|E|(1)

V Te|E| ,∇ye|E|(1)V
T
e|E|

]T
ξθ =

[
∇θe1(1)

V Te1 , . . . ,∇θe|E|(1)V
T
e|E|

]T
(27)

where ek(1) denotes the starting vertex qi of the k-th edge
(i, j), and thus ∇wek(1)

Vek ∈ R denotes the gradient with
respect to the state variable wi ∈ {xi, yi, θi} of potential
function Vij . This allows us to write ∇sV in a block diagonal
matrix form as

∇sV =

[
B ⊗ I2 O2n×|E|

On×2|E| B+

]
ξ (28)

At this point we notice that ṡ can be rewritten as

ṡ = −
[ ∑
j∈N+

1

∇s1V T1j , . . . ,
∑
j∈N+

n

∇snV Tnj
]T

(29)

which leads to the following diagonal block matrix

ṡ = −
[
B+ ⊗ I2 O2n×|E|

On×2|E| B+

]
ξ (30)

since (29) has contributions only from the starting vertex of
each edge. At this point, by combining eqs. (28) and (30) we
obtain

V̇ (s) =−
([
B ⊗ I2 O2n×|E|

On×2|E| B+

]
ξ

)T([B+ ⊗ I2 O2n×|E|

On×2|E| B+

]
ξ

)

= −ξT
[(
BTB+

)
⊗ I2 O2|E|×|E|

O|E|×2|E|
(
BT+B+

)] ξ = −ξT L ξ
(31)

Since the Lyapunov time derivative V̇ (s) is in a quadratic
form in which the matrix L is positive semi-definite then it is
negative semi-definite, proving that if the energy of the system
is finite at time t = t0 then it remains finite for all t > t0.

The Lyapunov time derivative shown in (31) is in a typical
quadratic form and its characteristics depend on the block
diagonal matrix L. Since the first diagonal entry of L is
a Kronecker product between an identity matrix and an
asymmetric and in general indefinite matrix, i.e. the directed
edge Laplacian LdE , studying the generic stability properties of
the system is difficult (i.e., for which class of topologies is this
system stable)3.

Corollary 1 (Topology Maintenance). Consider the multi-
agent system (1) running control laws (22) with an initial
topology G. Assume that the initial energy configuration is
finite. Then, if the matrix L defined as (23) is positive semi-
definite, the initial topology G is preserved for all t > t0.

Proof. The proof is a directed consequence of the construction
of the potential terms Vij along with the results of Theorem 1.

3Future work will focus on a characterization of topological conditions
ensuring that L is positive semidefinite. The characteristics of the matrix L
can be evaluated in a distributed fashion using the Lanczos Biorthogonalization
algorithm as done in [10].

In particular, since the potentials Vij are built in a way
that would make the energy of the system infinite when an
edge e is about to be removed from the edge set E and, as
proven in Theorem 1 if the system starts from a finite-energy
configuration then the energy must remain finite, then the
proposed control framework succeeds in achieving the global
objective that in our case is the maintenance of the initial
topology G for all time t > t0.

IV. SIMULATION RESULTS

For the numerical validation we consider a team composed
of 6 locally interacting agents that are performing dispersion
while maintaining the initial topology G and encoding the
best possible FOV interactions. Each of the agents’ field of
view is described by a triangle Ti with angle αi = 45◦ and
side li = 30. For the sake of simplicity here we assume that
there is not an offset between the orientation of the agent and
the orientation of the sensor, i.e., the angle ηi is equal to zero.
The quality mapM encoding the best desired configurations
for the neighbors of each agent i is selected according to
eqs. (13) to (15) in which l?i = 15, A = 1, and a = b = 0.1.

Fig. 3a and 3b show the initial and final positions of the
team of agents along with each field of view (dashed blue
lines) and the surface levels (circles) of the potential field Ψij

with i, j ∈ {1, . . . , 6}. Note how at the start of the dispersion
action there is no agent inside the center of the circles while
at the end of it each neighbor is at the desired position t?i . In
this regard, Fig. 3c depicts the evolution over time of the error
‖pj − t?i ‖ between the position of the neighbors pj and the
desired position t?i . Notice also that the interactions depicted
with black arrows are only the ones selected among the possible
interactions encoded by the limited fields of view for control
purpose, i.e., chosen in order to make the matrix L positive
semi-definite. Finally, in Fig. 3d is shown the decrease over
time of the Lyapunov function V (s) (orange) and the negative
semi-definiteness of its time derivative V̇ (s) (light blue). Note
that the left axis is referencing the Lyapunov function V while
the right one is referencing the time derivative V̇ . Around
time t = 40 s it can be seen how a sort of local minimum is
overcome: at that time, as shown in Fig. 3c, the errors between
the desired positions t?i of the agents 3, 6 and the position
of its neighbors 4, 1 (yellow and cyan lines, respectively)
have reached the zero while the errors of the other agents
have not. Then, as the local minimum is overcome, they start
going quickly towards the zero reaching it at time t = 90 s.
This also causes a small rearrangement in the formation of
the team as shown by the temporary increase of other error
variables. After time t = 90 s, as shown in Fig. 3d, the time
derivative V̇ stabilizes its value to zero and the energy of
the system stabilizes itself to a finite value as expected from
Theorem 1.

V. CONCLUSION

In this paper, we proposed a distributed multi-agent coordin-
ation framework for directed interactions encoded by arbitrary
fields of view. Considering as case of study an arbitrary field
of view represented by a geometrical triangle, we derived a
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(b) Position of the team of agents at final time t = 120 s.

0 30 60 90 120
0

1

2

3

4

5

6

7

8

9

(c) Evolution of the error between the agents neighbors and their desired
position t?i over time.
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(d) Evolution of the Lyapunov function V (s) and its time derivative V̇ (s)
introduced in eqs. (24) and (31) over time.

Fig. 3. Simulation results involving a team of 6 agents.

control law capable of maintaining the interactions among
the agents using two potential fields described by generic non
linear functions. Numerical simulations with a team of six
agents demonstrated the effectiveness of the proposed potential-
based control framework.
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